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Abstract

A near-optimal guidance law for the ascent trajectory from earth surface to earth orbit of a

fully reusable single-stage-to-orbit pure rocket launch vehicle is derived. Of interest are both the

optimal operation of the propulsion system and the optimal flight path. A methodology is

developed to investigate the optimal throttle switching of dual-fuel engines. The method is based

on selecting propulsion system modes and parameters that maximize a certain performance
function. This function is derived from consideration of the energy-state model of the aircraft

equations of motion. Because the density of liquid hydrogen is relatively low, the sensitivity of

perturbations in volume need to be taken into consideration as well as weight sensitivity. The

cost functional is a weighted sum of fuel mass and volume; the weighting factor is chosen to

minimize vehicle empty weight for a given payload mass and volume in orbit.

Nomenclature L H e
LOX

D = drag, lb M

E = total mechanical energy per unit M,,

weight, ft M, -°

g = gravitational acceleration on the R
earth surface, tVsec e T

h = altitude, R Tv

Ise = specific impulse, see

K = weighting parameter, ib/t_ 3 t

K" = value of K for minimum empty V

weight, lb/R 3 ve

L = lift, lb

= liquid hydrogen

= liquid oxygen
=Mach number

= transition Mach number

= optimal transition Mach number

= radius of the earth, t_

= thrust, lb

= magnitude of thrust component

along velocity vector, lb

= time, see

= speed, fps

= propellant volume, R3
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W

We

¢
_HR

TIOH

170R

P

= aircraft earth surface weight

(mass), lb

= propellant earth surface weight, lb
= cost functional

= mass flow ratio of liquid

hydrogen to liquid hydrocarbon

= mass flow ratio of liquid oxygen

to liquid hydrogen

= mass flow ratio of liquid oxygen

to liquid hydrocarbon

= net propellant density, ib/ft 3

Subscripts

DF = dual-fuel mode

E = empty
f = final value

H = liquid hydrogen
LO = lift-off

O = liquid oxygen

R = liquid hydrocarbon

SF = single-fuel mode

0 = initial value

Introduction

Current studies of single-stage-to-orbit

(SSTO) launch vehicles are focused on all-

rocket propulsion systems 1'2 (Fig. 1). One

feature of a SSTO vehicle is its low payload-

to-gross weight fraction. This means that

vehicle performance is extremely sensitive to

perturbations in vehicle design and

operation. In particular, it is essential to

"optimize" the flight path and the operation

of the propulsion system to the extent

possible in order to attain adequate mission

performance, and to do this for every

competing design under consideration.

Figure 1. Illustration of the SSTO rocket servicing
the Hubble Space Telescope.

Dual-fuel (tripropellent) systems that

initially burn both kerosene and hydrogen as

fuel and later switch to soley LH2, might

enable attainment of high mass fractions,

principally because of their greater average

propellant density and the greater thrust-to-

weight ratio of LOX-kerosene engines. 3"6

The advantages of hydrocarbon fuel are

important early in the ascent trajectory,

where vehicle weight is high, and its use may

be expected to lead to reduced vehicle size

and weight. Because LH2 is also typically

needed for cooling purposes, in the early

portion of the trajectory both fuels usually

must be burned simultaneously. Later in the

ascent, when vehicle weight is lower, specific

impulse is the key parameter, indicating

single-fuel LH2 use.

Two recent papers s'6 have considered

the optimization of dual-fuel SSTO vehicles.

Included in the studies was a determination

of Ms; the Mach Number at which to

transition from dual-fuel mode to LH2

operation in order to minimize vehicle empty
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weight. Both of these references treat M_. as

an external design variable.

In this paper, a guidance algorithm is

developed that determines whether dual-fuel

or single-fuel operation is superior as an

integral part of the trajectory integration.

This approach saves a substantial number of

iterations of a computer design code by

reducing the number of design variables, and

hence the number of design iterations

required in a vehicle optimization study.

Further, the guidance law will be directly

useable as part of a real-time, on-board,

propulsion control system.

The basis of the guidance law is the

energy-state dynamic model. The key idea is

to introduce the total mechanical energy as a

state variable, and then to neglect all other

dynamics. When flight path optimization is

done with this model, simple rules for the

optimal path and for the optimal operation of

the propulsion system are obtained. This

dynamic model has been used successfully

many times to obtain effective guidance laws

for a wide variety of aircraft and missions

(see Ref. 7 and the references therein for a

review of this work). The energy-state

approach is particularly suitable for launch

vehicles because efficient energy

accumulation (or equivalently maximizing

"total A V") is the primary trajectory

optimization goal.

In a series of papers _'9 we have used

energy-state methods to develop algorithms

for ascent trajectory optimization and

optimal operation of single-fuel multi-mode

propulsion systems. In particular, the

operation of propulsion systems with two

separate engines, air-breathing and rocket,

was investigated 9. The present paper

extends those methods to the dual-fuel case.

The main goal is to determine M_" and to

investigate optimal trajectories.

In the numerical results, vehicle

performance is computed using the NASA

Ames hypersonic vehicle synthesis code

(HAVOC) _°. HAVOC integrates geometry,

aerodynamics, propulsion, structures,

weights, and other computations to produce

point designs for a wide variety of launch

vehicles. It is capable of iteratively

determining "closed" vehicles, that is,

designs which meet specified payload mass

and volume requirements for a specified

mission. Although the trajectory guidance

law is based on the energy-state model, the

trajectory integration in HAVOC uses a

point mass model, including the effects of

earth rotation, earth curvature, and variable

gravity.

Optimization Function

The energy-state model is obtained by

using the total mechanical energy per unit

weight as the state
variable"9:

"E=P (1)

_V= -7" (2)

where

z= b--&+ ! v' (3)
R+h 2g

and

V

/,= --_( Tv-/9) (4)

and where the drag is evaluated at the lift

required for equilibrium of forces

perpendicular to the flight path.
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For a SSTO mission, what is desired is a

trajectory that gives the minimum empty

weight vehicle to put a given payload mass

and volume in orbit. Because the density of

liquid hydrogen is low, the sensitivity of

perturbations in volume need to be taken

into consideration as well as mass sensitivity,

and it is therefore necessary to minimize a

weighted sum of propellant weight and
volume. Thus we introduce the cost

functional

=  +xv, (5)

where Ke [0,oo) is a weighting parameter to
be chosen later.

The quantity to be minimized for a given

energy gain is

# t * E *

_° t, &P
(6)

where Eq. (1) was used. It is assumed that

> 0, P> 0 and that E is monotonically

increasing. If the propellant density is

p = _/v,, then from Eqs. (2) and (5), and

using w, =- w,

p - I,, pj
(7)

For convenience, we choose to invert the

integrand in Eq. (6) and maximize; from Eqs.

(1), (6), and (7), the quantity to be
maximized is

J=  raz (8)

where
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F= w -Kl,+ (9)
\ p.,,

The guidance algorithm then consists of

selecting propulsion system and trajectory
parameters that maximize the function F as

given by Eq. (9) at each energy level along

the trajectory, subject to any relevant
constraints.

For vehicles capable of either dual- or

single-fuel operation, the densities to be used

in Eq. (9) are

PD, = (popu+rlo_p, pl_+rlm_p, po ) (10)

PoPu(l+rlo.)

pzr= (Po+rloupa) (11)

SSTO vehicles are typically subject to

dynamic pressure constraints and a maximum

tangential acceleration limit. This latter limit,

nominally 3 times the earth surface

gravitational acceleration, is met by engine

throttling. It may happen that the limit

affects dual-fuel operation but not single-fuel

operation at a point along the trajectory. All
these constraints are accounted for in the

guidance algorithm.

In addition to being a useful tool in

preliminary design studies, the guidance

algorithm should be ideal for use in an on-

board real-time control system because : (1)

it is fully nonlinear and models all of the

vehicle's significant nonlinearities, (2) it is

algebraic and thus does not rely on

potentially unstable numerical integrations,

and (3) it depends directly on easily

measured vehicle states and parameters.



Numerical Results

All numerical examples will be based on

an SSTO rocket with a delta winged-body

configuration 2 (Fig. 1). The three

propellants (hydrocarbon fuel, LH2, and

liquid oxygen) are stored in three separate
internal tanks. The vehicle takes off

vertically and lands horizontally. The first

results to be presented use a fixed trajectory

commonly used for SSTO rockets.

As a first step, the best transition Mach

number, MtT, is determined by treating this

parameter as a single external design

variable, as was done in Kefs. 5 and 6. The

results are shown in Fig. 2, which plots gross

lift-offweight ( Wz,o) and empty weight (WE)

as a function of M_.. It is seen that both

minimum WLo and WE are obtained at about

M_. °= 9.0, and that the weight savings at

M,. ° are substantial relative to low values of

M_.. All of the data points on Fig. 2 are for

closed vehicles and hence several design

iterations are necessary for each point.

1 4' -.-' ............................... r ........ : .................

135 - "_i............................................ :.................i i x- _-_'.'4¢ i

1 3 -'......... :........ ":......... _"........ L........ ; ........ _........

- i iii!!iiiiii I

o

125

.... :-..... 7 ....... 7 ........ ; ........ ".... : : /

11. .+......._........._....... _........! _'; ........

105

1

I l 1 ] I l
095 4 6 8 Mtr" 10 12 14 16 '18

M¢

Figure 2. Effect of transition Mach number on
vehicle gross take-off weight and empty weight.

Before applying the developed guidance

law to this problem, the best value of K must

be determined. This is done by computing
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closed vehicles for a range of values of K

(Fig. 3). It is evident that a value ofK = 4

lb/ft 3, denoted hereafter by K °, gives very

nearly a minimum of both empty weight and

gross liff-offweight, and this value will be

used throughout the rest of the paper This

value of K" represents a factor of over 10 in

weighting the cost functional in favor of

propellant mass (a value of K= p would

signify equal weighting of propellant mass

and volume.) The figure shows that the use

of the optimally weighted cost functional

saves 1.7*/0 in empty weight and 1% in gross

lift-off weight, relative to minimizing

propellant weight only.

1 015 ._

,o,.........!..........f.......... ;;; tI 005

':_ 1 .......... !.......... ? ....... !.......... !........... ' .........

_" ! ! : i i /
o,99_ ! .......... ÷ .......... i .......... _....... /

r....... ........;,:.......
0.985 l- ......... : ........... ::....... "_k_: ..... i _ ........ ..........

i i i , i
0 980 2 3 _. K

Figure 3. Variation of gross take-off weight and
empty weight with parameter K.

It is of interest to compare these results

with the equivalent results for an air-

breathing launch vehicle, as shown in Fig. 2

of Ref. 9. For the airbreather, the best value

ofK is also around 4, but the empty weight

reduction relative to minimizing propellant

weight only is much larger, at 4.9%; this is of

course because all of the airbreather

propellant is low-density LH2, and therefore

this vehicle is more sensitive to volume

perturbations.

Figure 4 plots the function Falong the

fixed trajectory. Whichever mode of

operation, dual-fuel or single-fuel, that gives



thehighestvalueof F at a given speed

should be the one selected at that speed.

The figure shows that from litt-off to M =

9.0, the dual-fuel mode is superior, and

above this speed the single-fuel mode is best.

This value of M_, °= 9.0 agrees with the value

determined by treating M_, as a design

variable, Fig. 2, thus validating the guidance
law. The value of Mr, ° as determined in Ref.

5 was in the range 8.6 - 8.9, and for Re£ 6 it

was in the range 7.3 - 7.4.
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o
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Figure 4. Cost function histories for both propulsion
modes.

The relative distance between the two

curves on Fig. 4 provides an assessment of

the difference in performance between the

two modes at a given Mach number. It is

seen that both modes give substantially the

same performance between M = 7 and M =

11. This relative insensitivity to M,,

characteristic of a design variable near its

optimal value, was also observed in Ref. 5.

The use of single fuel LH2 mode becomes

increasingly advantageous as Mach number

increases past 11.

Fig. 5 shows the effect ofKon M_.

expected, the higher the value of K_ the

higher the premium on minimizing fuel

volume, and thus the larger the transition

Mach number, M_.

As

10

"! !!iiiiiiiii85

7

I 2 4 5 7

K

Figure 5. Effect on K on Mtr.

The function Fwas also used to

optimize the ascent trajectory (Fig. 6). As

compared with the fixed trajectory, the near-

optimal one has increased dynamic pressure,

especially in the initial dual-fuel mode.

x 10s

_"1 'L ''_ ...... C._ .... i .....

< II \ \I_,J, ._ _, _ k.--_ i

o] ......................'........
0 10 15 20

Mach NO.

Figure 6. The fixed and optimized flight path.

Fig. 7 shows the cost function surface

within the flight envelope. The optimal

energy climb path begins at zero altitude and

then encounters the maximum dynamic

pressure boundary and begins to climb along

this boundary up to Mach 3.2. After this

point the trajectory increases in altitude and

is not constrained by either the upper or

lower dynamic pressure limits. At Mach 9.6,

the tripropellent system switches to single-

308



fuel mode, and the altitude transits to a

higher level.

did the fixed, almost all the difference

occurring in dual-fuel mode.

25,

20,

15,

U"lO"

5,

O,

x 10==

...... : ::_._ ", -,_ ,

.. _ ;_ . .

";_' '- " 20

Art.(ft)
Mac_ NO

Figure 7. Cost function surface and optimzed flight

path.

The transition Mach number along the

optimal path is equal to 9.6, as can be seen

from Fig. 8.

2o ............... :............... :............... !.............. i!

¢/.

i i i _/ i( :

,2...............................i............// ..........i
,,,0...............i...............!........_- ............i

, ..............i............_i...............i...............!
2 ! _ I! ! !

0 5 10 15 20
MI_ Macn No.

Figure 8. Cost function histories of optimal energy
climb path.

Fig. 9 shows the weight ratios at each

energy level. It is seen that at orbit energy

level the optimal flight path gives a small but

significant savings of fuel relative to the fixed

path. The near-optimal trajectory consumed
less fuel in the amount of 0.9% of WLo than
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Figure 9. Weight ratios at energy levels.

Concluding Remarks

A simple guidance law for operation of

dual-fuel SSTO launch vehicles has been

developed and used to determine the optimal

value of the transition Mach Number from

dual-fuel to single-fuel. For the example

considered, the optimal transition Mach

Number was 9.0 along a fixed trajectory.

Along an optimal trajectory, the best

transition Mach number was 9.6; the optimal

trajectory had higher dynamic pressure than

the fixed, particularly in dual-fuel mode.

In the future, the guidance method

described in this paper easily could be

extended to optimize other propulsion

system parameters, such as flow rates of

individual propellants in multi-propellant

engines• Because the guidance algorithm is

internal to the trajectory optimization

routine, its use will save many iterations of a

preliminary design computer code relative to

treating these parameters as external design

variables. The guidance law is highly

accurate, robust, and simple to implement,

also making it ideal for use in a real-time on-

board control system for a SSTO launch

vehicles.
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Approximate Methods of Trajectory Optimization

Mark D. Ardema

Introduction

Application of optimal control theory in the form of the maximum principle to aircraft

trajectory optimization problems generally results in a two-point (2PBVP). The order of

this problem is double the number of state variables and the equations are always "half

unstable." Many schemes have been developed to numerically solve this difficult class of

problem, but all are unsuitable in a vehicle synthesis code. Not only are they

computationally expensive, but they are non-robust and not user-friendly.

What is needed in a vehicle synthesis code is a method that optimizes the trajectory in

one pass, that is as an integral part of the trajectory integration. The method must also be

robust and it should be easy to use and to interpret physically. The key to achieving this is

to use judicious approximations to reduce the functional optimization problem to a

function one.

In this report, two approximation techniques are reviewed and developed. The first is

the use of the Energy State Approximation (ESA). This well-known technique substitutes

the total mechanical energy for the speed as a state variable, and then neglects the altitude

and flight path dynamics relative to the energy dynamics. The second technique is the use

of Singular Perturbation Theory (SPT) to time-scale decouple equations of motion. These

two techniques are related, and in fact, the ESA may be viewed as an example of SPT

methods.



Trajectory Optimization; the Maximum Principle

The equations of motion of aircraft flight, no matter what the assumptions (see

Appendix A), are of state equation form:

x_: r(___,_u)

where X • _° is the state and U • UC91" is the control vector. Suitable boundary

conditions on the state vector components are prescribed. It is desired to find the

components of U along the trajectory so that

• to(x__.__u),,,,
is minimized. It is assumed that time is free. The necessary conditions for optimal control

are provided by the Maximum Principle (MP).

Theorem (the Maximum Principle): Introduce the variational Hamiltonian function

,[I

H= - £o + y_ 2,.<.
/=1

where the components of the adjoint vector, 2;, satisfy the differential equations

8H
'_i- ;i=l,.,n

Then, if U is an optimal control,

(a) U = arg max H

_ueu

(b) H=O

(c) Transversality conditions ("natural" boundary conditions on the 2 i ) hold.

Thus, we must solve a 2n dimension 2PBVP in the states and adjoints; exactly n



boundary conditions are provided at t = O and the other half at t = tr (due to the

travsversality conditions). The equations are unstable in the sense that if they are

linearized about a nominal trajectory, one-half of the eigenvalues will have positive real

parts and the other half negative (unless they are zero).

Approximation Techniques

Methods of reducing the 2PBVP to a simpler problem will now be developed. These

methods focus on order reduction and are motivated by two simple observations.

First, we note that if all componets off, except possibly/7,, and the function fo are

independent of a specific state variable, say X,, and the final value of X,. is not specified,

then the corresponding adjoint is always identically zero and the state equation .X, = f,

drops out of the problem (decouples from the other states). To see this, consider the i '_

adjoint equation and its travsversality condition:

8r,.
ex,

The only solution to this problem for any finite value of 8 fifi3Xi, is 2i - 0.

Second, we note that if there is only one state equation, then the necessary conditions

can be used to eliminate the adjoint variable and thus the problem reduces from a

functional optimization problem to a function one. To see this, consider

x: r(x,u)

.,=£"ro(x.u ,

We have

H=-fo+2f



j. dfo 2 8t"
8X dX

Applying the MP (assuming for the moment unbounded optimal control exists)

H = -fo +,_ f=O

8H _ fo c_ f
_2_-

8U 8U 8U
-0

Eliminating 2 gives

8 fo f + Of fo=O
8U 8U

for the optimal control. Alternatively, a direct approach may be used:

Thus (fo/f) is to be minimized with respect to Uat constant X; this leads directly to the

equation for optimal control derived just above from the MP.

SPT provides an organized, mathematical way to view order reduction of differential

equations. Consider the initial value system

x: r(x, r) x(o): Xo

¢ 1;"= g(X, Y) (o)=Yo

where ¢ is a "small" parameter.

Since ¢ is small, an approximate system may be expected to be



.,/',=r(x.,r.)

o: g(x,,Y,)

It can be proved that under certain conditions, the solution of this problem is a good

approximation to the solution of the original problem, except near t =Obecause the

boundary condition Y(O) = Y0 will be generally violated these.

The problem is that Yundergoes a rapid transition from its boundary condition to the

approximate solution at t = 0. To analyze this motion, the time scale is stretched by

T = t / ¢. The resulting equations are called the boundary layer equations

ax r(x,Y)
dT

dY g(X,Y)
dT

Setting ¢ = 0 to approximate these equations

dX
= 0 ::_ X = const = X o

dT

dYb = g(Xo,Y b)
dT

The solution to this equation approximates the desired solution near t = 0. There are

matching techniques to combine these two solutions to give an over-all approximation, if

desired. The key observation is that a second order system has been replaced by two first

order systems, and each of them reduces to a function optimization problem.



TheSPTprovidesaconvenientwayto look at theenergystateapproximation.Define

theaircrait energy per unit weight by

E = h+lV 2

2g

Differentiate and use the state equations in the Appendix

E_h+Vv_V(r -n)_e
g ME

Where Tv is the component of thrust along __V_Vand P is the specific excess power. Note

that this equation is valid for all three sets of equations given in the Appendix.

Now replace V by E as state variable and use the observation that h and _, are

capable of rapid change relative to E. This motivates writing

E=P

Setting e = 0 then gives an order reduction of the equations of motion by two. We will

use this approximation, the ESA, throughout.

This approximation has a long history of successful application in a wide variety of flight

trajectory problems. The main drawback is that the variables h and ?' may now jump

instantaneously at points along the trajectory, as well as at the boundaries. These jumps

could be accounted for by boundary layer analysis, but this is not done in this report.



ESA equationsof motionfor the three cases of interest are given in the Appendix.

these equations will now be used as the basis for discussing specific trajectory

optimization problems.

_ranimum Time/Furl to Climb

Starting from equations (1)'

in =-CT re(O) = mo

Jr =V

E=P E(o)=eo,e(,_)=_

L= m 8

=I(K,+K=Cr)e,

Here, the system functions and boundary conditions do not depend on Xand thus the

equation ._ = V drops out of the problem:

in =-CT re(O) = mo

E=P e(o)=eo,e(t,)=e,

J =I(K,+K=cr)_,

with P evaluated at L = rag. The system functions and boundary conditions now

depend on both Eand M and hence neither state equation uncouples. Thus the MP must

be applied and a 2PBVP solved.



To reduce the problem to one of function optimization, SPT is used to further reduce

the system.

th = -CT

ct=P

Setting e = 0 gives a single state equation

=-cr re(o)=

T=D,L=W

The optimization problem is now (h and Eare controls)

Y = (K 1 + K: CT) t r

With the obvious trivial solution t r = 0. Also, because the system functions do not

depend on m and m(t r) is free, 2 u - 0.

The boundary layer system for this problem with e = 0 is simply

_'=p

with m = const, so that

: = _ (r, + K2CT) de
P

and the solution reduces to

8



assuming that _(K_ + K:CT) is positive and Eis monotonic.

energy climb path.

This is the well-known

From now on we will assume "slowly varying" mass, that is that m is on a slower time

scale than E and thus its state equation may be ignored. It is also assumed that the throttle

is fixed.

lrtxed Range

This problem is the same except that range is fixed

x --v x(o) =Xo,X(tr)=x,

_'=p E(O) = Eo,E(t r)= Ef

J = _(K, + K_CT)dt

Here, ,;Lx = const :_ 0 so that the .X = V state equation does not uncouple, and we have

a 2PBVP. To effect system order reduction, SPT is used.

.7t"= V

_/_=P

H =-K I -K2CT+2xV+2eP

H _0 _ 2 x=const2_- 8x



c_ V OP
OH-K O(CT) 2x__ _

c2E- OE OE OE _OE

Setting c = 0 a problem with a single state is obtained

)_'=V T=D

H = -K_ - K=CT + 2 x V L=W

Applying the MP:

Min (K_ + K2CT_ r=D = Kt + K:CcTc
h,E V J L=W V c

K, + K_C¢T_
V_

This defines a cruise point, characterized by C c , Tc , and V c , in the flight envelope. By

proper selection of KI and Ke, this point can be made to closely approximate minimum

direct-operating-cost cruise.

For minimum time (K_ = 1, K 2 = 0), the optimum cruise point is given by

Max "V)
h,E (

For minimum fuel consumption (K, = 0, K: = 1) it is

1b,E _. a,E_, c ;

which is the classic Brequet cruise point.

lO



The boundary layer with 6 = 0 is

E=P

H = -K_ - K2CT + 2xV + 2eP

so that the optimal climb flight path is given by

Max Kth + K:CT - 2 x e:_,,._

with 2 x as given above.

Maximum Turning With No Thrust

We start with (2)' with 7'--0.

.,_" = V cosz

I_= Vsin Z

VD
E=P-

mg

L sin ¢Z=
mV

L cos q_= mg

11



with

In this case the X, ];'and j_ equations all uncouple. Changing to more convenient

variables:

= -V(B +Cco _)

where

J = -_ co fdt

co= tan# ,-l_<co_<+l
tan _M

_bM = sec-'[min(CL limit, load factor limit)]

Thus

f _ g tan _
V

<of

J = _ V(B +Cco2) dE

and the optimal controls are given by

Max

h, co

12



which leads to

(assuming right hand turn)

--_-) h + D h )=0

where

B- DO + Dw , C- DL°V:f2
Mg Mg 3

so that

The search for the optimum h probably should be done numerically.

Next, consider the same problem but using (3)'. Now, the .X equation uncouples

but the " aatlh_ions do not. The coupling is of two types. First, through the

Coriolis terms, which are relatively small and can be ignored. Second, through the

centripetal terms, which are large at the start of descent trajectories from orbit.

13



There are two ways to deal with this problem. First, the Coriolis and centripetal

terms are ignored. This is justified because what is really sought is turning ability due to

banking and these terms mask this. Second, the E and j_ terms may be decoupled using

SPT.

Maximum Cross-Range

Next consider, using (2)'

J : -_ _'dt : -_ V sin Z art

)( = V cos Z

= Vsinz

_'=p

= Lsin#
mV

L cos ¢ = rng

As before, the Xand Y equations uncouple but now the Z equation does not. To

reduce this to a function optimization problem, further time-scale separation is required.

Putting Z on a slower time scale than E gives the solution V = 0 and ,;t,x = 0.

F

Using equations (3) results in the same problems as for maximum turning.

14



Appendix

Equations of Motion

The following are the aircraft point-mass equations of motion under various

approximations.

(1) Flight in a vertical plane over a flat, non-rotating earth; no winds aloft and

thrust aligned with velocity.

lh = -CT

= V cosy

= Vsiny

T - D - rag sin y

m

L -mg cos),
j,=

mV

(2) 3-D flight, otherwise the same as (1).

in = -CT

= Vcos7 sing,

= Vcosy cosy

15



/7 = tiny

T - D - mg sin y

m

j:,_ Lsin¢
m V cos y

t

L cos¢_ - mg cosy

mV

(3) 3-D flight over a spherical, rotating earth; no winds aloft, thrust not aligned

with velocity, terms in the square of the earth rotation ignored.

T
m=

gslse

= r cosp cos (a +¢)- D
m

-gsiny

t= rcosfl sin(a+_')+L cos¢- cosy +Vcosy+2cocosxcos--
mV r R

( 1 v Y= Tc°sflsin(a+O+L sin_---cosycosztan--
_, m V cos y r R

+2aJItan y sin Z cosY- sin RI
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/_ = Vsiny

)_ = VRcosy cosz
Y

r COS--
R

I2 = VRc°sy sinz
F

The following are the energy-state approximations of these equations.

(1)'

l:n = -CT

J( = V

_ v(r- n) _ P
mg

L=mg

(2)'

= -CT

X = Vcos2"

= Vsinz

E=P

Lsin__,-
mV

L cos _ = mg

17



(3)' (with T = 0 and m = const)

L _ V Y
0 =_cos¢- g--+" +2cocosxcos--

mV V r R

L V Y Y
j" = _ sin ¢ - -- cos 2' tan -- - 2¢o sin --

mV r R R

.._= VRcosx
Y

r COS--
R

y_ VRsin Z
r
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